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Numerical solutions are obtained for the pressure Poisson equation with Neumann boun- 
dary conditions using a non-staggered grid. The existence of a solution for this equation 
requires the satisfaction of a compatibility condition which relates the source of the Poisson 
equation and the Neumann boundary conditions. This compatibility condition is not 
automatically satisfied on non-staggered grids. Failure to satisfy the compatibility condition 
leads to non-convergent iterative solutions. Consistent finite-difference approximations for the 
pressure equation with Neumann boundary conditions are developed to satisfy the com- 
patibility condition on non-staggered grids. The method is applied to calculate the pressure 
coefficient in a driven cavity when given the velocity field. The velocity is computed from 
the stream function-vorticity formulation of the Navier-Stokes equations. 0 1987 Academic 

Press, Inc. 

INTRODUCTION 

Owing to errors in the numerical approximations, direct integration of the 
momentum equation to calculate the pressure of incompressible flow gives different 
results when different paths are used to get to the same point [ 11. A more accurate 
solution [I] for the pressure is obtained from a Poisson equation {divergence of 
the momentum equation) with Neumann boundary conditions. Solutions for the 
Poisson equation with Neumann boundary conditions exist only if a compatibility 
condition is satisfied. This condition relates the source of the Poisson equation and 
the Neumann boundary conditions (Green’s theorem). This compatibility condition 
is not automatically satisfied on non-staggered grids. Failure to satisfy the com- 
patibility condition leads to non-convergent iterative solutions [l-6]. Two 
remedies were suggested by Briley [4] and Miyakoda [S] to satisfy the com- 
patibility condition. Briley [4] modified the source of the Poisson equation in order 
to meet this condition. While Miyakoda recommended in Ref. [S] that the boun- 
dary conditions be incorporated directly into the finite-difference scheme at interior 
points adjacent to the boundaries. The use of these remedies improves the con- 
vergence of the numerical solutions for the Poisson equation, however, the pressure 
problem remains a major difficulty [l-6]. 
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This paper presents a new method for the solution of the pressure 
equation with Neumann boundary conditions on non-staggered grids. Consistent 
finite-difference approximations for the pressure equation with Neumann 
conditions are developed to exactly satisfy the compatibility condition. 
the analysis are given in the following sections. 

MATHEMATICAL FORMLJLAT~ON 

Tn this section, the pressure Poisson equation of incompressible flow is derived 
from the divergence of the momentum equation. For clarity, the analysis is 
developed for the two-dimensional case; however, it is a~piicable without 
modification for three dimensions. 

Governing Equations 

e x-momentum equation is 

The y-momentum equation is 

where 

o=vx-up. (31 

Equations ( I ) and (2) are written in terms of the vorticity o for reasons that will 
be explained later in the consistent finite-difference approximation section. In the 
above equations, P, w, u, and v are the total pressure, vorticity, velocity component 
in the x-direction, and velocity component in the y-direction, respectively. Re is the 
Reynolds number. 

Differentiating Eq. (1) with respect to x and Eq. (2) with respect to y and adding, 
one obtains 

The subscripts x and y in all the governing equations refer to partial derivatives 
with respect to x and y, respectively. Equation (4) is a second order elliptic partial 
differential equation of the Poisson type. It is explicitly independent of the Re~~~~ds 
number because the diffusion terms are eliminated by the continuity equation. 
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Boundary Conditions 

Referring to Fig. 1, the following Neumann boundary conditions are obtained by 
applying the momentum equations (1) and (2) at the solid boundaries: 

P.+co-&-w,. at x = 0, 1 (5a) 

and 

P,= --u~+&o, at y = 0, 1. (5b) 

Solutions to Eq. (4) with the Neumann boundary conditions (5) are unique within 
an arbitrary constant. This arbitrary constant can be determined by using the 
relation 

1 

I .i 

1 
p dx dy = constant. (6) 

y=o x=0 

Compatibility Condition 

The existence of a solution for Eq. (4) with the Neumann boundary conditions 
(5) requires the satisfaction of the integral relation 

1 

I s 
1 

G dx dy = 
I 

P, dS, (7) 
y=o x=0 

where n is the outward normal to the boundary contour S, enclosing the solution 
domain (see Fig. 1). 

FIG. 1. Cavity geometry. 



GRID-POISSON EQUATION, 1 185 

u&ion (7) is a consequence of Green’s theorem. Failure to satisfy t 
e iterative solutions to drift slowly and endlessly [I). En the follow- 

ing sections it is shown that the compatibility condition (7) is not automatically 
satisfied on a non-staggered grid. 

reference to Fig. 2, the Poisson equation (4) and the b~~~da~y condEtions 
(5) are approximated on a non-staggered grid with grid increments h in both t 
X- and y-directions. All partial derivatives in Eqs. (4) and (5) are a~~rox~rnat~~ 
usmg second order accurate formulas. 

ifference Approximation for Eq. (4) 

ijference Approximation fir Eq. (5) 

where 
tively. 

and N are the number of grid points in the X- and y-directions, respec- 

The summation of the left- and right-hand members (L ) of Eqs. 
(8) and (9) can be interpreted as the divergence theorem in discrete form [ST, 

FIG. 2. Finite-difference grid 
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LHM=O (104 

i 

M-l N-l 

RHM = C lip, 2 - (uu)i, N- I+ (~0). Nl f C II(uw)M-- ~,/-(u~L,~l 4’2 
is2 j=2 1 

+(“1,2-W1,N-l+uM,N-1-WMI,2 
f @M- 1,1- 02, I + ‘%, N - OM - I, d/2Re. (lob) 

It is clear from Eqs. (lOa) and (lob) that the compatibility condition (7) is not 
obviously satisfied on non-staggered grids. 

Consistent Finite-Difference Approximations 

In the present study, the compatibility condition (7) is exactly satisfied on a non- 
staggered grid. This is done by using consistent finite-difference approximations for 
the source, 6, and the Neumann boundary conditions, P,. First, Eq. (4) is rewritten 
in a divergence form 

Referring to Fig. 2, Eq. (11) is approximated at the grid point (i,j) using second 
order accurate formulas. 

(P, - uw), - (P, - m), + (Py + uo), - (P, + UO), = 0. (12) 

The pressure gradients P, and P, in Eq. (12) are approximated using second 
order accurate formulas at the locations e, w, n, and s as 

(PA = v,j- pi- l,j)/~ (13a) 
(PA 7 (Pi+ l,j - Pi,jYh (13b) 
(p,)s=(p,,j-pi,j-l)/h (13c) 

tpy)n = Cpi,j+ 1 - Pi,j)/h. (13d) 

The terms (VW) and (uw) at the locations (e, w) and (n, s) are calculated from 
their values at the grid locations by averaging as 

(UW), = (Ui,jf lli,j- I)tOi,j+ Wi.j- l)/4 

(MO), = (uj,j+ 1 + ui,j)(“i,j+l + Oi.jY4. 

(14c) 

(14d) 
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~~bst~tuti~g Eqs. (13) and (14) in Eq. (12), one obtains 

pi+ 1.j i-l,j+Pj,j+1+Pi.j-,-4Pi,j 

Equation (15) is solved for P at all the interior points (2 d i 6 M - 1 and 
26/6N-1). hen Eq. (11) is applied at the grid points next to the ~~~~~a~~es~ 
for example, at i= 2, the pressure gradient (P,)W is evaluated at the ~~~at~o~ 
x = h/2. For consistency, the pressure gradient I’, computed from the bo 
c~ndit~~~ (5a) should be evaluated at the location x = h/2 and not at x = 
evaluation of the Neumann boundary conditions (5) at tbe boundaries as was done 
in Eq. (9) is inconsistent with Eq. (11) when applied at the grid points adjacent to 
the boundaries. This is one reason that the compat~bi~~ty ~~~d~tio~ (7) is not 
satisfied on non-staggered grids. 

hosing second order accurate formulas, the derivative boundary con 
Eq. (5a) is evaluated at x = h/2 as 

P2,j-Pl,j=-(w*,j+l+wl,jt1-~2,j-1-~I,j-1~/4 

+ v2,j(w2,j+ wl,j) h/4 (2<j<N- 1). 

Similar expressions are derived using Eq. (5) at x = 1_ h/2, y = h/2, an 
in Eqs. ( 16b )-( 16d), respectively. 

vp,,j$P,-.;,j= (W M,j+l~~~-l,j+1~W~,j-li~~~l.j-1~/4 

--v M-1.j (0 ~,j + WM- l,j) h/4 (2fj<N-1) (16b) 

Pi,2~Pi,1~bwi+~,2+Wi+i,1~wi--l,2~~i-l, 

- ui, 2(Wi, 2 + 02, I) h/4 (2di< (l6c) 

~Bi,N+Pi,N-l~~~wi+1,N+wi+l,N-l1wOi-l,N~W;-1,N-~)/4 

+(u,,,+ui,N~*)(WI,N+wj,N-lI)hl (2~iiM- I). (16 

The summation of the left- and right-hand members of Eqs. (15) and (16) in this 
case gives 

LHM=O 

RHM = 0. 

This proves that the compatibility condition (7) is exactly satistie 
form on a non-staggered grid. 

Et is important to mention here that the viscous terms in the momen 
equations (1) and (2) do not appear in the source of the pressure equation 
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however, they are in the Neumann boundary conditions (5). In order to satisfy the 
compatibility condition (7), the integral of the viscous terms over the boundary 
contour should cancel. This can be achieved by writing the viscous terms as the curl 
of the vorticity vector in Eqs. (1) and (2). This is the second reason that the com- 
patibility condition (7) is not satisfied on non-staggered grids. Although the convec- 
tion terms in the momentum equations (1) and (2) are also written in terms of the 
vorticity, w, this is not necessary in the present analysis. 

Calculation of the Velocity Field 

In order to solve Eqs. (4) and (5) for the pressure, the velocity field is first com- 
puted from the momentum equations (1) and (2) and the continuity equation. 

Equations (1) (2) and continuity are solved here to second order accuracy using 
the well-known stream function-vorticity formulation 173. 

NUMERICAL RESULTS 

Numerical solutions for the stream function and vorticity equations are obtained 
using the successive over-relaxation (SOR) method [7]. After the velocity field is 
calculated from the solution of the stream function, the pressure is obtained from 
the solution of Eq. (15) using the SOR method. 

Numerical results are obtained for the driven cavity shown in Fig. 1 at Re = 100 
using 41 x 41 grid points. The stream function and vorticity contours are compared 
with the numerical results of Ref. [7] in Figs. 3 and 4. It can be seen from these 
figures that the results of Ref. [7] are duplicated here, as they should be, because 
the same method is used. 

Given the velocity field, the pressure Poisson equation is solved for the total 
pressure P. The static pressure is computed from the total pressure and the velocity 
using the relation P, = P - ;(u’ + v’). The static and total pressure coefficient con- 
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FIG. 3. Stream function contours at Re = 100. (a) Ref. [7], (b) present results. 
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fiG. 4. Vorticity contours at Re= 

Ial (bl 

FIG. 5. Static pressure contours (Re C,) at Re = 100. (a) Ref. [7], (b) present resuits. 

100. (a) Ref. [73, (6) present resuks 

(bl 

FrG. 6. Total pressure contours (Re Cp,) at Re = 100. (a) Ref. [7], (10) present results. 
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FIG. 7. Error in the pressure Poisson equation 

tours CpE and Cpt are shown in Figs. 5 and 6, respectively. The pressure 
coefficient C, is defined as C, = 2(P - PJU', where P, is the pressure at the center 
of the cavity lower wall and U is the reference velocity. It can be seen from Figs. 5 
and 6 that the computed results are in good argument with the results of Ref. [7]. 
Burggraf [7] computed the pressure by direct integration of the momentum 
equations using a tine grid. No details are given about the integration path used in 
these calculations. Because the Reynolds number is relatively small, the direct 
integration of the momentum equations should yield accurate results on a tine grid. 
Since, the pressure Poisson equation (4) is explicitly independent of the Reynolds 
number, further testing at different Reynolds numbers is unnecessary. 

The convergence characteristics of the pressure Poisson equation are shown in 
Fig. 7. The vertical axis shows the average error at a point plotted against the num- 
ber of iterations. The average error is reduced to the specified limit of IO-* at 
iteration step 1000. All calculations are obtained using an over-relaxation factor of 
1.0. No attempt was made to optimize any of the relaxation factors used in the 
present study. 

CONCLUSIONS 

A new method is developed for the numerical solution of the pressure Poisson 
equation with Neumann boundary conditions when the stream function-vorticity 
method is used to obtain the velocity field. The method exactly satisfies the com- 
patibility condition, Eq. (7), on a non-staggered grid. It consists of three steps: 
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(1) rite the viscous terms in the momentum equations in terms of t 
tidy. 

(2) Write the Poisson equation in a conservative form (Eq. (4)). 
(3) Use consistent finite-difference approximations for the 

and the Neumann boundary conditions (Eqs. (12)-(16)). 

The method is tested for the driven cavity problem which is a we’d-do~~rne~te 
test case. Convergence of the pressure equation is demonstrated (Fig. 7) and con- 
firms the analytical development of the method. Both the results of Fig. 7 and t 
analytical proof are independent of the flow field (Reynolds number) and t 
geometry of the test problem. 

APPENDIX: NOMENCLATURE 

grid spacing 
number of grid points in x- and y-directions, respectively 
total pressure 
boundary contour enclosing the solution domain 
velocity components in x- and y-directions, respectively 
velocity of the cavity upper wall 
pressure coefficient: 2(p -ptc)/U’ 
static and total pressure coefficients, respectively 
increment along the boundary contour S 
summation of the left- and right-hand members of the com~atib~~~ty 
condition 
pressure at the centre of the cavity lower wall 
static pressure 
Reynolds number 
right-hand side of Eq. (4) 
vorticity 
stream function 

refer to east, west, north, and south of the grid points (i,,j)* res 
tively 
refer to the outward normal to the boundary contour S 
refer to partial derivatives with respect to x and y, res 
refer to grid locations in X- and y-directions, respectively 
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